
Morpho Security Review

Auditors

Christoph Michel, Lead Security Researcher

Emanuele Ricci, Security Researcher

JayJonah8, Security Researcher

Datapunk, Junior Security Researcher

ReEntrant, Junior Security Researcher

Report prepared by: Pablo Misirov

December 6, 2022

Contents

1 About Spearbit 2

2 Introduction 2

3 Risk classification 2
3.1 Impact . 2
3.2 Likelihood . 2
3.3 Action required for severity levels . 2

4 Executive Summary 3

5 Findings 4
5.1 High Risk . 4

5.1.1 Liquidating Morpho's Aave position leads to state desync . 4
5.1.2 Turning off an asset as collateral on Morpho-Aave still allows seizing of that collateral on

Morpho and leads to liquidations . 4
5.2 Medium Risk . 5

5.2.1 User withdrawals can fail if Morpho position is close to liquidation 5
5.2.2 P2P borrowers' rate can be reduced . 5
5.2.3 Setting a new rewards manager breaks claiming old rewards 6
5.2.4 Frontrunners can exploit system by not allowing head of DLL to match in P2P 6
5.2.5 Morpho could be instantly liquidated when increaseP2PDeltasLogic is called on a depre-

cated market (deprecated by compound) . 7
5.2.6 Differences between Morpho and Compound borrow validation logic 7
5.2.7 Users can continue to borrow from a deprecated market . 8
5.2.8 ERC20 with transfer's fee are not handled by *PositionManager 8
5.2.9 Cannot liquidate Morpho users if no liquidity on the pool . 9
5.2.10 Supplying and borrowing can recreate p2p credit lines even if p2p is disabled 9
5.2.11 In Compound implementation, P2P indexes can be stale . 9
5.2.12 claimToTreasury(COMP) steals users' COMP rewards . 10
5.2.13 Compound liquidity computation uses outdated cached borrowIndex 10

5.3 Low Risk . 11
5.3.1 HeapOrdering.getNext returns the root node for nodes not in the list 11
5.3.2 Heap only supports balances up to type(uint96).max . 11
5.3.3 Delta leads to incorrect reward distributions . 12
5.3.4 When adding a new rewards manager, users already on the pool won't be earning rewards . 12

5.4 Gas Optimization . 12
5.4.1 Minor gas saving: move variable assignment after conditional check 12
5.4.2 liquidationThreshold computation can be moved for gas efficiency 13
5.4.3 Add max approvals to markets upon market creation . 13

5.5 Informational . 14
5.5.1 Differences between Morpho and Aave liquidate validation logic 14
5.5.2 Differences between Morpho and Aave repay validation logic 15
5.5.3 Differences between Morpho and Aave withdraw validation logic 15
5.5.4 Differences between Morpho and Aave borrow validation logic 16
5.5.5 Differences between Morpho and Aave supply validation logic 17
5.5.6 Morpho should avoid creating a new market when the underlying Aave market is frozen . . . 17
5.5.7 Differences between Morpho and Compound liquidate validation logic 18
5.5.8 repayLogic in Compound PositionsManagershould revert if toRepay is equal to zero 18
5.5.9 Differences between Morpho and Compound supply validation logic 19
5.5.10 Consider creating a documentation that covers all the Morpho own flags, lending protocol's

flags and how they interact/override each other . 19
5.5.11 Missing natspec or typos in natspec . 20
5.5.12 Removed unused "named" return parameters from functions 20
5.5.13 Consider merging the code of CompoundMath libraries and use only one 20

1

5.5.14 Consider reverting the creation of a deprecated market in Compound 21
5.5.15 Document HeapOrdering . 21
5.5.16 Consider removing the Aave-v2 reward management logic if it is not used anymore 22
5.5.17 Avoid shadowing state variables . 22
5.5.18 Governance setter functions do not check current state before updates 23
5.5.19 Emit event for amount of dust used to cover withdrawals . 23
5.5.20 Break up long functions into smaller composable functions 23
5.5.21 Remove unused struct members . 24
5.5.22 Remove unused struct . 24
5.5.23 No validation check on prices fetched from the oracle . 24
5.5.24 onBehalf argument can be set as the Morpho protocols address 25
5.5.25 maxSortedUsers has no upper bounds validation and is not the same in Compound/Aave-2 . 25
5.5.26 Consider adding the compound revert error code inside Morpho custom error to better track

the revert reason . 25
5.5.27 liquidationThreshold variable name can be misleading . 26
5.5.28 Users can be liquidated on Morpho at any time when the deprecation flag is set by governance 26
5.5.29 Refactor _computeP2PIndexes to use InterestRateModel's functions 26

2

1 About Spearbit

Spearbit is a decentralized network of expert security engineers offering reviews and other security related services
to Web3 projects with the goal of creating a stronger ecosystem. Our network has experience on every part of the
blockchain technology stack, including but not limited to protocol design, smart contracts and the Solidity compiler.
Spearbit brings in untapped security talent by enabling expert freelance auditors seeking flexibility to work on
interesting projects together.

Learn more about us at spearbit.com

2 Introduction

TARGET PROJECT DESCRIPTION HERE ...

Disclaimer : This security review does not guarantee against a hack. It is a snapshot in time of Morpho according
to the specific commit. Any modifications to the code will require a new security review.

3 Risk classification

Severity level Impact: High Impact: Medium Impact: Low
Likelihood: high Critical High Medium
Likelihood: medium High Medium Low
Likelihood: low Medium Low Low

3.1 Impact

• High - leads to a loss of a significant portion (>10%) of assets in the protocol, or significant harm to a majority
of users.

• Medium - global losses <10% or losses to only a subset of users, but still unacceptable.

• Low - losses will be annoying but bearable--applies to things like griefing attacks that can be easily repaired
or even gas inefficiencies.

3.2 Likelihood

• High - almost certain to happen, easy to perform, or not easy but highly incentivized

• Medium - only conditionally possible or incentivized, but still relatively likely

• Low - requires stars to align, or little-to-no incentive

3.3 Action required for severity levels

• Critical - Must fix as soon as possible (if already deployed)

• High - Must fix (before deployment if not already deployed)

• Medium - Should fix

• Low - Could fix

3

https://spearbit.com

4 Executive Summary

Over the course of 10 days in total, Morpho engaged with Spearbit to review the morpho-v1 protocol. In this period
of time a total of 51 issues were found.

Note: This document is a draft generated for Morpho’s internal purposes and shall not be considered as the final
version of the report.

Summary

Project Name Morpho

Repository morpho-v1

Commit 5f39e0...1232

Type of Project Lending and Borrowing, DeFi

Audit Timeline Nov 21st - Dec 2nd

Two week fix period Dec 2nd - Dec 16th

Issues Found

Severity Count Fixed Acknowledged

Critical Risk 0 0 0

High Risk 2 0 0

Medium Risk 13 0 0

Low Risk 4 0 0

Gas Optimizations 3 0 0

Informational 29 0 0

Total 51 0 0

4

https://www.morpho.xyz/
https://spearbit.com
https://github.com/morpho-dao
https://github.com/morpho-dao/morpho-v1
https://github.com/morpho-dao/morpho-v1/tree/5f39e0d197830dbd4ede7f1657973a56f7e21232

5 Findings

5.1 High Risk

5.1.1 Liquidating Morpho's Aave position leads to state desync

Severity: High Risk

Context: ExitPositionsManager.sol#L239

Description: Morpho has a single position on Aave that encompasses all of Morpho's individual user positions that
are on the pool. When this Aave Morpho position is liquidated the user position state tracked in Morpho desyncs
from the actual Aave position. This leads to issues when users try to withdraw their collateral or repay their debt
from Morpho. It's also possible to double-liquidate for a profit.

Carried over from: #15

Example: There's a single borrower B1 on Morpho who is connected to the Aave pool.

B1 supplies 1 ETH and borrows 2500 DAI. This creates a position on Aave for Morpho The ETH price crashes
and the position becomes liquidatable. A liquidator liquidates the position on Aave, earning the liquidation bonus.
They repaid some debt and seized some collateral for profit. This repaid debt / removed collateral is not synced
with Morpho. The user's supply and debt balance remain 1 ETH and 2500 DAI. The same user on Morpho can
be liquidated again because Morpho uses the exact same liquidation parameters as Aave. The Morpho liquidation
call again repays debt on the Aave position and withdraws collateral with a second liquidation bonus. The state
remains desynced. Recommendation: Liquidating the Morpho position should not break core functionality for
Morpho users.

Morpho: We will not implement any "direct" fix inside the code.

5.1.2 Turning off an asset as collateral on Morpho-Aave still allows seizing of that collateral on Morpho
and leads to liquidations

Severity: High Risk

Context: aave-v2/MorphoGovernance.sol#L407, aave-v2/MorphoUtils.sol#L285

Description: The Morpho Aave deployment can set the asset to not be used as collateral for Aave's Morpho
contract position. On Aave, this prevents liquidators from seizing this asset as collateral.

1. However, this prevention does not extend to users on Morpho as Morpho has not implemented this check.
Liquidations are performed through a repay & withdraw combination and withdrawing the asset on Aave is
still allowed.

2. When turning off the asset as collateral, the single Morpho contract position on Aave might still be over-
collateralized, but some users on Morpho suddenly lose this asset as collateral (LTV becomes 0) and will be
liquidated.

Recommendation: The feature does not work well with the current version of the Morpho Aave contracts. It must
be enabled right from the beginning and may not be set later when users are already borrowing against the asset
as collateral on Morpho. Clarify when this feature is supposed to be used, taking into consideration the mentioned
issues. Reconsider if it's required.

Morpho:

Spearbit:

5

https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/aave-v2/ExitPositionsManager.sol#L239
https://github.com/spearbit-audits/morpho/issues/13
https://github.com/morpho-labs/morpho-contracts/blob/a861d50597ae047640727fd63afc3c3a9b0e1cbc/contracts/aave/positions-manager-parts/PositionsManagerForAaveGettersSetters.sol#L208-L219
https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/aave-v2/MorphoGovernance.sol#L407
https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/aave-v2/MorphoUtils.sol#L285
https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/aave-v2/MorphoUtils.sol#L285

5.2 Medium Risk

5.2.1 User withdrawals can fail if Morpho position is close to liquidation

Severity:Medium Risk

Context: ExitPositionsManager.sol#L468

Description: When trying to withdraw funds from Morpho as a P2P supplier the last step of the withdrawal algo-
rithm borrows an amount from the pool ("hard withdraw"). If the Morpho position on Aave's debt / collateral value
is higher than the market's max LTV ratio but lower than the market's liquidation threshold, the borrow will fail and
the position can also not be liquidated. The withdrawals could fail.

Carried over from: PR #15

Recommendation: This seems hard to solve in the current system as it relies on the "hard withdraws" to always
ensure enough liquidity for P2P suppliers. Consider ways to mitigate the impact of this problem.

Morpho: Since Morpho will first launch on Compound (where there is only Collateral Factor), we will not focus now
on this particular issue.

5.2.2 P2P borrowers' rate can be reduced

Severity: Medium Risk

Original Context: (this area of the code has changed significantly since the initial audit, so maintaining the link to
the original code base) MarketsManagerForAave.sol#L448

Context: aave-v2/InterestRatesManager.sol#L182 compound/InterestRatesManager.sol#L164

Description: Users on the pool currently earn a much worse rate than users with P2P credit lines. There's a
queue for being connected P2P. As this queue could not be fully processed in a single transaction the protocol
introduces the concept of a max iteration count and a borrower/supplier "delta" (c.f. yellow paper). This delta leads
to a worse rate for existing P2P users. An attacker can force a delta to be introduced, leading to worse rates than
before.

Carried over from: PR #16

Example: Imagine some borrowers are matched P2P (earning a low borrow rate), and many are still on the pool
and therefore in the pool queue (earning a worse borrow rate from Aave).

• an attacker supplies a huge amount, creating a P2P credit line for every borrower. (They can repeat this step
several times if the max iterations limit is reached.)

• the attacker immediately withdraws the supplied amount again. The protocol now attempts to demote the
borrowers and reconnect them to the pool. But the algorithm performs a "hard withdraw" as the last step if
it reaches the max iteration limit, creating a borrower delta. These are funds borrowed from the pool (at a
higher borrow rate) that are still wrongly recorded to be in a P2P position for some borrowers. This increase
in borrow rate is socialized equally among all P2P borrowers. (reflected in an updated p2pBorrowRate as the
shareOfDelta increased.)

• The initial P2P borrowers earn a worse rate than before. If the borrower delta is large, it's close to the on-pool
rate.

• If an attacker-controlled borrower account was newly matched P2P and not properly reconnected to the pool
(in the "demote borrowers" step of the algorithm), they will earn the better P2P rate than the on-pool rate
they earned before.

Recommendation: Consider mitigations for single-transaction flash supply & withdraw attacks.

Spearbit:

Set this to acknowledged for now, as Morpho team mentioned that they might want to refactor the entire queue
system at some point.

6

https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/aave-v2/ExitPositionsManager.sol#L468
https://github.com/spearbit-audits/morpho/issues/15
https://github.com/morpho-labs/morpho-contracts/blob/a861d50597ae047640727fd63afc3c3a9b0e1cbc/contracts/aave/MarketsManagerForAave.sol#L448
https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/aave-v2/InterestRatesManager.sol#L182
https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/compound/InterestRatesManager.sol#L164
https://github.com/spearbit-audits/morpho/issues/16

5.2.3 Setting a new rewards manager breaks claiming old rewards

Severity: Medium Risk

Context: MorphoGovernance.sol#L230

Description: Setting a new rewards manager will break any old unclaimed rewards as users can only claim
through the PositionManager.claimRewards function which then uses the new reward manager.

Carried over from: PR #37

Recommendation: Be cautious when setting new reward managers and ideally ensure that there are no un-
claimed rewards for users.

Morpho: Perhaps make this setter settable only once? And have another setter saying whether or not we should
accrue rewards of users so that in the MatchingEngine we do not call the rewards manager if we already know
there is no more liquidity mining.

Spearbit: That's one way to solve it if you don't need the migration behavior.

Morpho: We decided to keep it as it is for now. Will warn users if we plan to change rewards manager. At the end
we'll need different reward managers.

5.2.4 Frontrunners can exploit system by not allowing head of DLL to match in P2P

Severity: Medium Risk

Context: MatchingEngine.sol

Description: for a given asset x, liquidity is supplied on the pool since there are not enough borrowers. suppli-
ersOnPool head: 0xa with 1000 units of x

whenever there is a new transaction in the mempool to borrow 100 units of x,

• frontrunner supplies 1001 units of x and is supplied on pool

• updateSuppliers will put the frontrunner on the head (assuming very high gas is supplied)

• borrower's transaction lands and is matched 100 units of x with a frontrunner in p2p

• frontrunner withdraws the remaining 901 left which was on the underlying pool

Favorable conditions for an attack:

• relatively fewer gas fees & relatively high block gas limit

• insertSorted is able to traverse to head within block gas limit (i.e length of DLL)

since this is a non-atomic sandwich, the frontrunner needs excessive capital for a block's time period.

Carried over from: #PR 59

Recommendation: Consider mitigations for frontrunning sandwich attacks.

Morpho:

We acknowledge this issue and we are currently searching for better matching engine mechanisms. Though, as
we must prevent the protocol from DDOs attacks a classic FIFO is not possible.

We'll keep the matching engine like it is for as the result of the front-running attack you mentioned is similar to a
whale with huge capital which would be at the head of the list.

7

https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/aave-v2/MorphoGovernance.sol#L230
https://github.com/spearbit-audits/morpho/issues/37
https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/aave-v2/MatchingEngine.sol#L305
https://github.com/spearbit-audits/morpho/issues/59

5.2.5 Morpho could be instantly liquidated when increaseP2PDeltasLogic is called on a deprecated mar-
ket (deprecated by compound)

Severity: Medium Risk

Context: compound/PositionsManager.sol#L545-L577

Description:

The current implementation of PositionsManager.increaseP2PDeltasLogic does not have validations check that
usually the "user" function have in place.

Currently, the Morpho Governance (only the owner is allowed to call this function via delegatecall) increase the
delta of a poolToken and as a consequence execute

• _borrowFromPool(_poolToken, _amount that triggers a borrow on the underlying Compound protocol

• _supplyToPool(_poolToken, _getUnderlying(_poolToken), _amount) that triggers a supply (mint) on
the underlying Compound protocol

If the underlying cToken has the isDeprecated flag set to true, the borrowed amount that Morpho has just made
can be seized in full by a liquidator.

Recommendation:

Morpho should consider the implication of such an action and if the action should be reverted if the underlying
cToken is deprecated. Morpho should also consider which other flags both from Morpho logic and Compound
logic should be validated before executing this operation.

Morpho:

Spearbit:

5.2.6 Differences between Morpho and Compound borrow validation logic

Severity: Medium Risk

Context: compound/PositionsManager.sol#L336-L344

Description:

The Morpho approach is to mimic 1:1 the logic of the underlying protocol, including all the logic and sanity checks
that are done before executing a user's action. On top of the protocol's logic, Morpho has its own logic.

By reviewing both the logic, we have noticed that there are some differences between those logics

• Compound has a mechanism to prevent borrows if the new borrowed amount would go above the current
borrowCaps[cToken] threshold. Morpho does not check this threshold and could allow users to borrow on the
P2P side (avoiding the revert because it would not trigger the underlying compound borrow action). Morpho
should anyway monitor the borrowCaps of the market because it could make increaseP2PDeltasLogic and
_unsafeWithdrawLogic reverts.

• Both Morpho and Compound DO NOT check if a market is in "deprecated" state. This mean that as soon as
a user borrow some tokens, he/she can be instantly liquidated by another user.

– If the flag is true on Compound, the Morpho User can be liquidated directly on compound

– If the flag is true on Morpho, the borrower can be liquidated on Morpho

• Morpho does not check if borrowGuardianPaused[cToken] on Compound, a user could be able to borrow in
P2P while the cToken market has borrow paused.

More information about detailed information can be found in the discussion topic "Differences in actions checks
between Morpho and Compound"

Recommendation:

8

https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/compound/PositionsManager.sol#L545-L577
https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/compound/PositionsManager.sol#L336-L344
https://github.com/spearbit-audits/morpho-novemberAudit/discussions/18
https://github.com/spearbit-audits/morpho-novemberAudit/discussions/18

Consider implementing the missing logic/sanity checks or documenting why those checks should not be added to
Morpho's implementation.

Morpho:

Spearbit:

5.2.7 Users can continue to borrow from a deprecated market

Severity: Medium Risk

Context: aave-v2/MorphoGovernance.sol#L395 compound/MorphoGovernance.sol#L372

Description: When a market is being marked as deprecated, there is no verification that the borrow for that market
has already been disabled. This means a user could borrow from this market and immediately be eligible to be
liquidated.

Recommendation: A couple of options:

• add a require or modifier to ensure borrow has been disabled, and revert if not.

• disable borrow as part of deprecating the market.

Morpho:

Spearbit:

5.2.8 ERC20 with transfer's fee are not handled by *PositionManager

Severity: Medium Risk

Context: PositionsManager.sol, EntryPositionsManager.sol, ExitPositionsManager.sol

Description:

Some ERC20 tokens could have fees attached to the transfer event, others could enable them in the future (see
USDT, USDC).

The current implementation of both PositionManager (Aave and Compound flavor) is not taking in considerations
these types of ERC20 tokens. While Aave seems not to take in consideration this behavior (see LendingPool.sol),
Compound in the other hand is explicitly handling it inside the doTransferIn function. Morpho is taking for granted
that the amount specified by the user will be the amount transferred to the contract's balance, while in reality the
contract will receive less.

In the supplyLogic, for example, Morpho will account the user's p2p/pool balance for the full amount but will
repay/supply to the pool less than the amount accounted for.

Recommendation:

Consider updating the *PositionManager logic to track the real amount of token that have been sent by the
user after transfer (difference in before and after balance) but also the amount of tokens that have been sup-
plied/borrowed/withdrawn/... given that Morpho itself is doing a second transfer/transferFrom to/from the
Aave/Compound protocol.

Morpho:

Spearbit:

9

https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/aave-v2/MorphoGovernance.sol#L395
https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/compound/MorphoGovernance.sol#L372
https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/compound/PositionsManager.sol
https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/aave-v2/EntryPositionsManager.sol
https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/aave-v2/ExitPositionsManager.sol
https://github.com/aave/protocol-v2/blob/master/contracts/protocol/lendingpool/LendingPool.sol#L119
https://github.com/compound-finance/compound-protocol/blob/master/contracts/CErc20.sol#L152-L187

5.2.9 Cannot liquidate Morpho users if no liquidity on the pool

Severity: Medium Risk

Context: aave-v2/File.sol#L123

Description: Morpho implements liquidations through repaying the borrowed asset and then withdrawing the
collateral asset from the underlying protocol (Aave / Compound). If there is no liquidity on the collateral asset pool
the liquidation will fail. Morpho could incur bad debt as they cannot liquidate the user. The liquidation mechanisms
of Aave and Compound work differently: They allow the liquidator to seize the liquidatee's aTokens/cTokens which
can later be withdrawn for the underlying token once there is enough liquidity on the pool.

Technically, an attacker could even force no liquidity on the pool by frontrunning liquidations by borrowing the entire
pool amount - preventing them from being liquidated on Morpho. However, this would require significant capital as
collateral in most cases.

Recommendation: Think about adding a similar feature where liquidators can seize aTokens/cTokens instead of
withdrawing underlying tokens from the pool. The aTokens/cTokens of all pool users are already in the Morpho
contract and thus in Morpho's control. Note that this would only work with onPool balances but not with inP2P
balances as these don't mint aTokens/cTokens.

Morpho:

Spearbit:

5.2.10 Supplying and borrowing can recreate p2p credit lines even if p2p is disabled

Severity: Medium Risk

Context: aave-v2/EntryPositionsManager.sol#L117, aave-v2/EntryPositionsManager.sol#L215,
compound/PositionsManager.sol#L258, compound/PositionsManager.sol#L354

Description: When supplying / borrowing the algorithm tries to reduce the deltas p2pBorrowDelta/p2pSupplyDelta
by moving borrowers/suppliers back to P2P. It is not checked if P2P is enabled. This has some consequences
related to when governance disables P2P and wants to put users & liquidity back on the pool through
increaseDelta calls. The users could enter P2P again by supplying and borrowing.

Recommendation: Disable matching the initial delta-matching step in supply and borrow if P2P is disabled.

Morpho:

Spearbit:

5.2.11 In Compound implementation, P2P indexes can be stale

Severity: Medium Risk

Context: MorphoUtils.sol#L119-L156, PositionsManager.sol#L344, PositionsManager.sol#L447,
PositionsManager.sol#L502-L505

Description:

The current implementation of MorphoUtils._isLiquidatable loop through all the tokens in which the user has
supplied to/borrowed from. The scope of the function is to check whether the user can be liquidated or not by
verifying that debtValue > maxDebtValue.

Resolving the issue PR #19 imply that the compound borrow index used are always up-to-date but the P2P issues
associated to the token could still be out to date if the market has not been used recently and the underlying
compound indexes (on which the P2P index is based) has changed a lot.

As a consequence, all the functions that rely on _isLiquidatable (liquidate, withdraw, borrow) could return a
wrong result if the majority of the user's balance is on the P2P balance (the problem is even more aggravated
without resolving the issue PR #19.

Let's say, for example that

10

https://github.com/morpho-dao/morpho-v1/tree/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts
https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/aave-v2/EntryPositionsManager.sol#L117
https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/aave-v2/EntryPositionsManager.sol#L215
https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/compound/PositionsManager.sol#L258
https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/compound/PositionsManager.sol#L354
https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/compound/MorphoUtils.sol#L119-L156
https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/compound/PositionsManager.sol#L344
https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/compound/PositionsManager.sol#L447
https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/compound/PositionsManager.sol#L502-L505
https://github.com/spearbit-audits/morpho-novemberAudit/issues/19
https://github.com/spearbit-audits/morpho-novemberAudit/issues/19

• Alice supply ETH in pool

• Alice supply BAT in P2P

• Alice borrow some DAI

At some point in time the ETH value goes down, but the interest rate of BAT goes up. If the P2P index of BAT
had been correctly up-to-date, Alice would have been still solvent, but she gets liquidated by bob that call liqui-
date(alice, ETH, DAI)

Even by fixing PR #19 Alice would still be liquidated because her whole collateral is on P2P and not in the pool.

Recommendation:

Consider following the same approach implemented in the Morpho-Aave implementation inside MorphoUtils._-
liquidityData that will all the token that the user has supplied/borrowed.

Unlike Aave, the Morpho's Compound implementation do not have a max hard-cap limit, this mean that the _-
isLiquidatable loop could possibly revert because of Out of Gas exception.

Ultimately, Morpho should always remember anyway to always call updateP2PIndexes (for both Aave and com-
pound) before any logic inside the *PositionsManager (both Aave and compound).

Morpho:

Spearbit:

5.2.12 claimToTreasury(COMP) steals users' COMP rewards

Severity: Medium Risk

Context: compound/MorphoGovernance.sol#L414

Description: The claimToTreasury function can send a market's underlying tokens that have been accumulated
in the contract to the treasury. This is intended to be used for the reserve amounts that accumulate in the contract
from P2P matches. However, Compound also pays out rewards in COMP and COMP is a valid Compound market.
Sending the COMP reserves will also send the COMP rewards. This is especially bad as anyone can claim COMP
rewards on the behalf of Morpho at any time and the rewards will be sent to the contract. An attacker could even
frontrun a claimToTreasury(cCOMP) call with a Comptroller.claimComp(morpho, [cComp]) call to sabotage the
reward system. Users won't be able to claim their rewards.

Recommendation: If Morpho wants to support the COMP market, consider separating the COMP reserve from
the COMP rewards.

Morpho:

Spearbit:

5.2.13 Compound liquidity computation uses outdated cached borrowIndex

Severity: Medium Risk

Context: compound/MorphoUtils.sol#L211

Description: The _isLiquidatable iterates over all user-entered markets and calls _getUserLiquidity-
DataForAsset(poolToken) -> _getUserBorrowBalanceInOf(poolToken). However, it only updates the indexes
of markets that correspond to the borrow and collateral assets. The _getUserBorrowBalanceInOf function
computes the underlying pool amount of the user as userBorrowBalance.onPool.mul(lastPoolIndexes[_-
poolToken].lastBorrowPoolIndex);. Note that lastPoolIndexes[_poolToken].lastBorrowPoolIndex is a
value that was cached by Morpho and it can be outdated if there has not been a user-interaction with that market
for a long time.

The liquidation does not match Compound's liquidation anymore and users might not be liquidated on Morpho
that could be liquidated on Compound. Liquidators would first need to trigger updates to Morpho's internal borrow
indexes.

11

https://github.com/spearbit-audits/morpho-novemberAudit/issues/19
https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/aave-v2/MorphoUtils.sol#L274
https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/aave-v2/MorphoUtils.sol#L274
https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/compound/MorphoGovernance.sol#L414
https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/compound/MorphoUtils.sol#L211

Recommendation: To match Compound's liquidation procedure, consider using Compound's borrowIndex which
might have been updated after Morpho updated its own internal indexes.

function _getUserBorrowBalanceInOf(address _poolToken, address _user)
internal
view
returns (uint256)

{
Types.BorrowBalance memory userBorrowBalance = borrowBalanceInOf[_poolToken][_user];
return

userBorrowBalance.inP2P.mul(p2pBorrowIndex[_poolToken]) +
- userBorrowBalance.onPool.mul(lastPoolIndexes[_poolToken].lastBorrowPoolIndex);
+ userBorrowBalance.onPool.mul(ICToken(_poolToken).borrowIndex());
}

Morpho:

Spearbit:

5.3 Low Risk

5.3.1 HeapOrdering.getNext returns the root node for nodes not in the list

Severity: Low Risk

Context: HeapOrdering.sol#L328

Description: If an id does not exist in the HeapOrdering the getNext() function will return the root node:

uint256 rank = _heap.ranks[_id]; // @audit returns 0 as rank. rank + 1 will be the root
if (rank < _heap.accounts.length) return getAccount(_heap, rank + 1).id;
else return address(0);

Recommendation: Consider returning the zero address if the rank variable is zero (the _id was not found).

Morpho:

Spearbit:

5.3.2 Heap only supports balances up to type(uint96).max

Severity: Low Risk

Context: HeapOrdering.sol#L9

Description: The current heap implementation packs an address and the balance into a single storage slot which
restricts the balance to the uint96 type with a max value of ~7.9e28. If a token has 18-decimals, the largest
balances that can be stored will be 7.9e10. This could lead to problems with token of low value, for example if 1.0
tokens are worth 0.0001$, a user could only store 7_900_000$.

Recommendation: The Aave markets currently don't list a token of such low value. Check the token values before
listing an Aave market on Morpho or consider increasing the balance.

Morpho:

Spearbit:

12

https://github.com/morpho-dao/morpho-data-structures/blob/0cd679077f2e80f4db85dcd87bd8a5087d060cdb/contracts/HeapOrdering.sol#L328
https://github.com/morpho-dao/morpho-data-structures/blob/0cd679077f2e80f4db85dcd87bd8a5087d060cdb/contracts/HeapOrdering.sol#L9

5.3.3 Delta leads to incorrect reward distributions

Severity: Low Risk

Context: aave-v2/File.sol#L123

Description: Delta describes the amount that is on the pool but still wrongly tracked as inP2P for some users.
There are users that do not have their P2P balance updated to an equivalent pool balance and therefore do not
earn rewards. There is now a mismatch of this delta between the pool balance that earns a reward and the sum of
pool balances that are tracked in the reward manager to earn that reward. The increase in delta directly leads to
an increase in rewards for all other users on the pool.

Recommendation: In a future version, think about distributing the share of delta on the balance that earns rewards
(delta / (onPool + delta)) to all P2P suppliers.

Morpho:

Spearbit:

5.3.4 When adding a new rewards manager, users already on the pool won't be earning rewards

Severity: Low Risk

Context: aave-v2/MatchingEngine.sol#L315

Description: When setting a new rewards manager, existing users that are already on the pool are not tracked
and won't be earning rewards.

Recommendation: There's currently no efficient way to fix this besides initializing the new reward manager with
all users who are already on the pool. Users with large pool supplies can resupply / reborrow a tiny amount to the
pool to be registered in the new rewards manager.

Morpho: Yes it was like that when Aave had still rewards. Perhaps we should remove it since it's very unlikely that
they put rewards on the v2 while the v3 is planned to be deployed on mainnet...

Spearbit: If you are certain that Aave is not going to re-enable rewards on v2, I would say that removing it is the
best thing to do. Less code leads to less attack surface and more overall clarity of the codebase.

5.4 Gas Optimization

5.4.1 Minor gas saving: move variable assignment after conditional check

Severity: Gas Optimization

Context: aave-v2/MorphoUtils.sol#L266

Description: Minor gas saving. This assignment becomes unnecessary if the check on line 269 on whether the
user is participating in this market is false.

Recommendation: Move this assignment to after the check.

Morpho:

Spearbit:

13

https://github.com/morpho-dao/morpho-v1/tree/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts
https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/aave-v2/MatchingEngine.sol#L315
https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/aave-v2/MorphoUtils.sol#L266

5.4.2 liquidationThreshold computation can be moved for gas efficiency

Severity: Gas Optimization

Context: aave-v2/MorphoUtils.sol#L320-L323

Description: The vars. liquidationThreshold computation is only relevant if the user is supplying this asset.
Therefore, it can be moved to the if (_isSupplying(vars.userMarkets, vars.borrowMask)) branch.

Recommendation: Consider changing the code:

// Cache current asset collateral value.
uint256 assetCollateralValue;
if (_isSupplying(vars.userMarkets, vars.borrowMask)) {

assetCollateralValue = _collateralValue(
vars.poolToken,
_user,
vars.underlyingPrice,
assetData.tokenUnit

);
values.collateral += assetCollateralValue;
// Calculate LTV for borrow.
values.maxDebt += assetCollateralValue.percentMul(assetData.ltv);

+ // Update LT variable for withdraw.
+ if (assetCollateralValue > 0)
+ values.liquidationThreshold += assetCollateralValue.percentMul(
+ assetData.liquidationThreshold
+);
}

// Update debt variable for borrowed token.
if (_poolToken == vars.poolToken && _amountBorrowed > 0)

values.debt += (_amountBorrowed * vars.underlyingPrice).divUp(assetData.tokenUnit);

- // Update LT variable for withdraw.
- if (assetCollateralValue > 0)
- values.liquidationThreshold += assetCollateralValue.percentMul(
- assetData.liquidationThreshold
-);

Morpho:

Spearbit:

5.4.3 Add max approvals to markets upon market creation

Severity: Gas Optimization

Context: aave-v2/File.sol#L123

Description: Approvals to the compound markets are set on each supplyToPool function call.

Recommendation: Consider adding a single max approval of type(uint256).max once upon market creation
in MorphoGovernance.createMarket to save gas, and remove the other approvals. The Aave-v2 contracts are
already doing this.

Morpho:

Spearbit:

14

https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/aave-v2/MorphoUtils.sol#L320-L323
https://github.com/morpho-dao/morpho-v1/tree/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts

5.5 Informational

5.5.1 Differences between Morpho and Aave liquidate validation logic

Severity: Informational

Context: aave-v2/ExitPositionsManager.sol#L204-L287, aave-v2/ExitPositionsManager.sol#L643,
aave-v2/ExitPositionsManager.sol#L468

Description:

The Morpho approach is to mimic 1:1 the logic of the underlying protocol, including all the logic and sanity checks
that are done before executing a user's action. On top of the protocol's logic, Morpho has its own logic.

By reviewing both the logic, we have noticed that there are some differences between those logics

Note: Morpho re-implement the liquidate function as a mix of

• repay + supply operations on Aave executed inside _unsafeRepayLogic where needed

• withdraw + borrow operations on Aave executed inside _unsafeWithdrawLogic where needed

From _unsafeRepayLogic (repay + supply on pool where needed)

• Because _unsafeRepayLogic internally call aave.supply the whole tx could fail in case the supplying has
been disabled on Aave (isFrozen == true) for the _poolTokenBorrowed

• Morpho is not checking that the Aave borrowAsset has isActive == true

• Morpho do not check that remainingToRepay.rayDiv(poolIndexes[_poolToken].poolBorrowIndex) > 0.
Trying to repay that amount to Aave would make the whole tx revert

• Morpho do not check that remainingToSupply.rayDiv(poolIndexes[_poolToken].poolSupplyIndex) >
0. Trying to borrow that amount to Aave would make the whole tx revert

From _unsafeWithdrawLogic (withdraw + borrow on pool where needed)

• Because _unsafeWithdrawLogic internally call aave.borrow the whole tx could fail in case the borrowing has
been disabled on Aave (isFrozen == true or borrowingEnabled == false) for the _poolTokenCollateral

• Morpho is not checking that the Aave collateralAsset has isActive == true

• Morpho do not check that remainingToWithdraw.rayDiv(poolIndexes[_poolToken].poolSupplyIndex) >
0. Trying to withdraw that amount from Aave would make the whole tx revert

• Morpho do not check that remainingToBorrow.rayDiv(poolIndexes[_poolToken].poolBorrowIndex) >
0. Trying to borrow that amount from Aave would make the whole tx revert

More information about detailed information can be found in the discussion topic "Differences in actions checks
between Morpho and Aave"

Recommendation:

Consider implementing the missing logic/sanity checks or documenting why those checks should not be added to
Morpho's implementation.

Morpho:

Spearbit:

15

https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/aave-v2/ExitPositionsManager.sol#L204-L287
https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/aave-v2/ExitPositionsManager.sol#L643
https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/aave-v2/ExitPositionsManager.sol#L468
https://github.com/spearbit-audits/morpho-novemberAudit/discussions/61
https://github.com/spearbit-audits/morpho-novemberAudit/discussions/61

5.5.2 Differences between Morpho and Aave repay validation logic

Severity: Informational

Context: aave-v2/ExitPositionsManager.sol#L181-L197, aave-v2/ExitPositionsManager.sol#L643

Description:

The Morpho approach is to mimic 1:1 the logic of the underlying protocol, including all the logic and sanity checks
that are done before executing a user's action. On top of the protocol's logic, Morpho has its own logic.

By reviewing both the logic, we have noticed that there are some differences between those logics

Note: Morpho re-implement the repay function as a mix of repay + supply operations on Aave where needed

• Both Aave and Morpho are not handling ERC20 token with fees on transfer

• Because _unsafeRepayLogic internally call aave.supply the whole tx could fail in case the supplying has
been disabled on Aave (isFrozen == true)

• Morpho is not checking that the Aave market has isActive == true

• Morpho do not check that remainingToRepay.rayDiv(poolIndexes[_poolToken].poolBorrowIndex) > 0.
Trying to repay that amount to Aave would make the whole tx revert

• Morpho do not check that remainingToSupply.rayDiv(poolIndexes[_poolToken].poolSupplyIndex) >
0. Trying to supply that amount to Aave would make the whole tx revert

More information about detailed information can be found in the discussion topic "Differences in actions checks
between Morpho and Aave"

Recommendation:

Consider implementing the missing logic/sanity checks or documenting why those checks should not be added to
Morpho's implementation.

Morpho:

Spearbit:

5.5.3 Differences between Morpho and Aave withdraw validation logic

Severity: Informational

Context: aave-v2/ExitPositionsManager.sol#L154-L173, aave-v2/ExitPositionsManager.sol#L468

Description:

The Morpho approach is to mimic 1:1 the logic of the underlying protocol, including all the logic and sanity checks
that are done before executing a user's action. On top of the protocol's logic, Morpho has its own logic.

By reviewing both the logic, we have noticed that there are some differences between those logics

Note: Morpho re-implement the withdraw function as a mix of withdraw + borrow operations on Aave where
needed

• Both Aave and Morpho are not handling ERC20 token with fees on transfer

• Because _unsafeWithdrawLogic internally call aave.borrow the whole tx could fail in case the borrowing
has been disabled on Aave (isFrozen == true or borrowingEnabled == false)

• Morpho is not checking that the Aave market has isActive == true

• Morpho do not check that remainingToWithdraw.rayDiv(poolIndexes[_poolToken].poolSupplyIndex) >
0. Trying to withdraw that amount from Aave would make the whole tx revert

• Morpho do not check that remainingToBorrow.rayDiv(poolIndexes[_poolToken].poolBorrowIndex) >
0. Trying to borrow that amount from Aave would make the whole tx revert

16

https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/aave-v2/ExitPositionsManager.sol#L181-L197
https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/aave-v2/ExitPositionsManager.sol#L643
https://github.com/spearbit-audits/morpho-novemberAudit/discussions/61
https://github.com/spearbit-audits/morpho-novemberAudit/discussions/61
https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/aave-v2/ExitPositionsManager.sol#L154-L173
https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/aave-v2/ExitPositionsManager.sol#L468

Note 1: Aave is NOT checking that the market isFrozen. This mean that users can withdraw even if the market is
active but frozen

More information about detailed information can be found in the discussion topic "Differences in actions checks
between Morpho and Aave"

Recommendation:

Consider implementing the missing logic/sanity checks or documenting why those checks should not be added to
Morpho's implementation.

Morpho:

Spearbit:

5.5.4 Differences between Morpho and Aave borrow validation logic

Severity: Informational

Context: aave-v2/EntryPositionsManager.sol#L188-L280

Description:

The Morpho approach is to mimic 1:1 the logic of the underlying protocol, including all the logic and sanity checks
that are done before executing a user's action. On top of the protocol's logic, Morpho has its own logic.

By reviewing both the logic, we have noticed that there are some differences between those logics

Note: Morpho re-implement the borrow function as a mix of withdraw + borrow operations on Aave where needed

• Both Aave and Morpho are not handling ERC20 token with fees on transfer

• Morpho is not checking that the Aave market has isFrozen == false (check done by Aave on the borrow
operation), users could be able to borrow in P2P even if the borrow is paused on Aave (isFrozen == true)
because Morpho would only call the aave.withdraw (where the frozen flag is not checked)

• Morpho do not check if market is active (would borrowingEnabled == false if market is not active?)

• Morpho do not check if market is frozen (would borrowingEnabled == false if market is not active?)

• Morpho do not check that healthFactor > GenericLogic.HEALTH_FACTOR_LIQUIDATION_THRESHOLD

• Morpho do not check that remainingToBorrow.rayDiv(poolIndexes[_poolToken].poolBorrowIndex) >
0. Trying to borrow that amount from Aave would make the whole tx revert

More information about detailed information can be found in the discussion topic "Differences in actions checks
between Morpho and Aave"

Recommendation:

Consider implementing the missing logic/sanity checks or documenting why those checks should not be added to
Morpho's implementation.

Morpho:

Spearbit:

17

https://github.com/spearbit-audits/morpho-novemberAudit/discussions/61
https://github.com/spearbit-audits/morpho-novemberAudit/discussions/61
https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/aave-v2/EntryPositionsManager.sol#L188-L280
https://github.com/spearbit-audits/morpho-novemberAudit/discussions/61
https://github.com/spearbit-audits/morpho-novemberAudit/discussions/61

5.5.5 Differences between Morpho and Aave supply validation logic

Severity: Informational

Context: aave-v2/EntryPositionsManager.sol#L90-L182

Description:

The Morpho approach is to mimic 1:1 the logic of the underlying protocol, including all the logic and sanity checks
that are done before executing a user's action. On top of the protocol's logic, Morpho has its own logic.

By reviewing both the logic, we have noticed that there are some differences between those logics

Note: Morpho re-implement the supply function as a mix of repay + supply operations on Aave where needed

• Both Aave and Morpho are not handling ERC20 token with fees on transfer

• Morpho is not checking that the Aave market has isFrozen == false, users could be able to supply in P2P
even if the supply is paused on Aave (isFrozen == true) because Morpho would only call the aave.repay
(where the frozen flag is not checked)

• Morpho is not checking if remainingToSupply.rayDiv(poolIndexes[_poolToken].poolSupplyIndex)
=== 0. Trying to supply that amount to Aave would make the whole tx revert

More information about detailed information can be found in the discussion topic "Differences in actions checks
between Morpho and Aave"

Recommendation:

Consider implementing the missing logic/sanity checks or documenting why those checks should not be added to
Morpho's implementation.

Morpho:

Spearbit:

5.5.6 Morpho should avoid creating a new market when the underlying Aave market is frozen

Severity: Informational

Context: aave-v2/MorphoGovernance.sol#L473

Description:

In the current implementation of Aave MorphoGovernance.createMarket the function is only checking if the AToken
is in active state.

Morpho should also check if the AToken is not in a frozen state. When a market is frozen, many operations on the
Aave side will be prevented (reverting the transaction).

Recommendation:

Consider adding a check on the getFrozen() flag when creating a new market

Morpho:

Spearbit:

18

https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/aave-v2/EntryPositionsManager.sol#L90-L182
https://github.com/spearbit-audits/morpho-novemberAudit/discussions/61
https://github.com/spearbit-audits/morpho-novemberAudit/discussions/61
https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/aave-v2/MorphoGovernance.sol#L473

5.5.7 Differences between Morpho and Compound liquidate validation logic

Severity: Informational

Context: PositionsManager.sol#L487-L511

Description:

The Morpho approach is to mimic 1:1 the logic of the underlying protocol, including all the logic and sanity checks
that are done before executing a user's action. On top of the protocol's logic, Morpho has its own logic.

Note: Morpho liquidation does not directly call compound.liquidate but acts as a repay + withdraw operation.

By reviewing both the logic, we have noticed that there are some differences between those logics

• Morpho does not check Compound seizeGuardianPaused because it is not implementing a "real" liquidate
on compound, but it's emulating it as a "repay" + "withdraw".

– Morpho should anyway monitor off-chain when the value of seizeGuardianPaused changes to true.
Which are the scenarios for which Compound decide to block liquidations (across all cTokens)? When
this happens, is Compound also pausing all the other operations?

– [Open question] Should Morpho pause liquidations when the seizeGuardianPaused is true?

• Morpho is not reverting if msg.sender === borrower

• Morpho does not check if _amount > 0

• Compound revert if amountToSeize > userCollateralBalance, Morpho does not revert and instead use
min(amountToSeize, userCollateralBalance)

More information about detailed information can be found in the discussion topic "Differences in actions checks
between Morpho and Compound"

Recommendation:

Consider implementing the missing logic/sanity checks or documenting why those checks should not be added to
Morpho's implementation.

Morpho:

Spearbit:

5.5.8 repayLogic in Compound PositionsManagershould revert if toRepay is equal to zero

Severity: Informational

Context: PositionsManager.sol#L471

Description:

The current implementation of repayLogic is correctly reverting if _amount == 0 but is not reverting if toRepay
== 0. The value inside toRepay is given by the min value between _getUserBorrowBalanceInOf(_poolToken,
_onBehalf) and _amount.

If the _onBehalf user has zero debt, toRepay will be initialized with zero.

Recommendation:

Consider reverting if toRepay == 0

Morpho:

Spearbit:

19

https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/compound/PositionsManager.sol#L487-L511
https://github.com/spearbit-audits/morpho-novemberAudit/discussions/18
https://github.com/spearbit-audits/morpho-novemberAudit/discussions/18
https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/compound/PositionsManager.sol#L471

5.5.9 Differences between Morpho and Compound supply validation logic

Severity: Informational

Context: compound/PositionsManager.sol#L240-L243

Description:

The Morpho approach is to mimic 1:1 the logic of the underlying protocol, including all the logic and sanity checks
that are done before executing a user's action. On top of the protocol's logic, Morpho has its own logic.

By reviewing both the logic, we have noticed that there are some differences between those logics

• Compound is handling ERC20 tokens that could have transfer's fee, Morpho is not doing it right now, see PR
#32

• Morpho is not checking if the underlying Compound market has been paused for the supply action (see
mintGuardianPaused[token]). This mean that even if the Compound supply is paused, Morpho could allow
users to supply in the P2P.

• Morpho is not checking if the market on both Morpho and Compound has been deprecated. If the deprecation
flag is intended to be true for a market that will be removed in the next future, probably Morpho should not
allow users to provide collateral for such a market.

More information about detailed information can be found in the discussion topic "Differences in actions checks
between Morpho and Compound"

Recommendation:

Consider implementing the missing logic/sanity checks or documenting why those checks should not be added to
Morpho's implementation.

Morpho:

Spearbit:

5.5.10 Consider creating a documentation that covers all the Morpho own flags, lending protocol's flags
and how they interact/override each other

Severity: Informational

Context:

Description:

Both Morpho and Aave/Compound have their own flags to check before allowing a user to interact with the pro-
tocols. Usually, Morpho has decided to follow the logic to map 1:1 the implementation of the underlying protocol
validation.

There are some examples also where Morpho has decided to override some of their own internal flags

For example, in the Aave aave-v2/ExitPositionsManager.liquidateLogic even if a Morpho market has been flagged
as "deprecated" (user can be liquidated without being insolvent) the liquidator would not be able to liquidate the
user if the liquidation logic has been paused.

Morpho should create an in-depth documentation that explains all these flags and how they interact with each other
and which was the scenario for which Morpho has decided not to follow the protocol's behavior (if this scenario
exists).

The documentation will be very useful to track where and when those flags interact with each other and what could
be the possible outcome of a change decision.

Recommendation:

Morpho:

Spearbit:

20

https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/compound/PositionsManager.sol#L240-L243
https://github.com/spearbit-audits/morpho-novemberAudit/issues/32
https://github.com/spearbit-audits/morpho-novemberAudit/issues/32
https://github.com/spearbit-audits/morpho-novemberAudit/discussions/18
https://github.com/spearbit-audits/morpho-novemberAudit/discussions/18
https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/aave-v2/ExitPositionsManager.sol#L217-L235

5.5.11 Missing natspec or typos in natspec

Severity: Informational

Context:

Description:

• Updated the natspec updateP2PIndexes replacing "exchangeRatesStored()" with "exchangeRateStored()"

• Updated the natspec _updateP2PIndexes replacing "exchangeRatesStored()" with "exchangeRateStored()"

• Updated the natspec for event MarketCreated replacing "_poolToken" with "_p2pIndexCursor"

Recommendation:

Morpho:

Spearbit:

5.5.12 Removed unused "named" return parameters from functions

Severity: Informational

Context:

• MorphoUtils.sol#L42-L48

• MorphoUtils.sol#L50-L54

Description:

Some functions in the codebase are defining "named" functions parameter that are not used explicitly inside the
code. This could lead to future changes to return wrong values if the "explicit return" statement is removed and the
function return the "default" values (based on the variable type) of the "named" parameter.

Recommendation:

Remove the "named" parameter and only use the explicit return statement.

Morpho:

Spearbit:

5.5.13 Consider merging the code of CompoundMath libraries and use only one

Severity: Informational

Context:

• compound/InterestRatesManager.sol#L7

• compound/MorphoUtils.sol#L6

• RewardsManager.sol#L7

Description:

The current codebase uses libraries/CompoundMath.sol but there's already an existing solidity library with the
same name inside the package @morpho-dao/morpho-utils

For better code clarity, consider merging those two libraries and only import the one from the external package. Be
aware that the current implementation inside the @morpho-dao/morpho-utils CompoundMath mul and div function
uses low level yul and should be tested, while the library used right now in the code use "high level" solidity.

Recommendation:

Consider merging the code between libraries/CompoundMath.sol and @morpho-dao/morpho-utils Compound-
Math and use only the one imported from the external package.

21

https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/compound/MorphoUtils.sol#L97
https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/compound/MorphoUtils.sol#L106
https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/aave-v2/MorphoGovernance.sol#L119
https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/compound/MorphoUtils.sol#L42-L48
https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/compound/MorphoUtils.sol#L50-L54
https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/compound/InterestRatesManager.sol#L7
https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/compound/MorphoUtils.sol#L6
https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/compound/RewardsManager.sol#L7

Morpho:

Spearbit:

5.5.14 Consider reverting the creation of a deprecated market in Compound

Severity: Informational

Context: compound/MorphoGovernance.sol#L442

Description:

Compound has a mechanism that allows the Governance to set a specific market as "deprecated". Once a market
is deprecated, all the borrows can be liquidated without checking whether the user is solvent or not. Compound
currently allows users to enter (to supply and borrow) a market.

In the current version of MorphoGovernance.createMarket, Morpho governance is not checking whether a market
is already deprecated on compound before entering it and creating a new Morpho-market. This would allow a
Morpho user to possibly supply or borrow on a market that has been already deprecated by compound.

Recommendation:

Consider reverting the creation of a Morpho market if the cToken has been deprecated on Compound.

Morpho:

Spearbit:

5.5.15 Document HeapOrdering

Severity: Informational

Context: HeapOrdering.sol#L66

Description: Morpho uses a non-standard Heap implementation for their Aave P2P matching engine. The im-
plementation only correctly sorts _maxSortedUsers / 2 instead of the expected _maxSortedUsers. Once the
_maxSortedUsers is reached, it halves the size of the heap, cutting the last level of leaves of the heap. This is done
because a naive implementation that would insert new values at _maxSortedUsers (once the heap is full) and shift
them up, then decrease the size to _maxSortedUsers - 1 again, would end up concentrating all new values on
the same single path from the leaf to the root node. Cutting off the last level of nodes of the heap is a heuristic to
remove low-value nodes (because of the heap property) while at the same time letting new values be shifted up
from different leaf locations. In the end, the goal this tries to achieve is that more high-value nodes are stored in
the heap and can be used for the matching engine.

Recommendation: Document your heap implementation and what it tries to achieve. The _maxSortedUsers value
should be of the form 2ˆk - 1 to have a full binary tree optimizing the distribution in the last step. The current
version that morpho-v1 uses as its dependency does not have as many tests as the latest version of this data
structure. Consider updating to the newer, more-tested version. Consider fuzz-testing this data structure to ensure
it works with random values in unpredictable insertion order.

Morpho:

Spearbit:

22

https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/compound/MorphoGovernance.sol#L442
https://github.com/morpho-dao/morpho-data-structures/blob/0cd679077f2e80f4db85dcd87bd8a5087d060cdb/contracts/HeapOrdering.sol#L66

5.5.16 Consider removing the Aave-v2 reward management logic if it is not used anymore

Severity: Informational

Context:

• aave-v2/Morpho.sol#L148-L172

• aave-v2/Morpho.sol#L17-L26

• aave-v2/MorphoGovernance.sol

• aave-v2/MatchingEngine.sol#L314-L321

• aave-v2/MatchingEngine.sol#L340-L351

Description:

If the current aave-v2 reward program has ended and the Aave protocol is not re-introducing it anytime soon (if not
at all) consider removing the code that currently is handling all the logic behind claiming rewards from the Aave
lending pool for the supplied/borrow assets.

Removing that code would make the codebase more clean, reduce surface of attack and possible revert in case
some of the state variables are incorrectly miss configured (rewards management on Morpho is activated but Aave
is not distributing rewards anymore).

Recommendation:

Consider removing the Aave-v2 reward management logic if it is not used anymore.

Morpho:

Spearbit:

5.5.17 Avoid shadowing state variables

Severity: Informational

Context:

• aave-v2/InterestRatesManager.sol#L61

• aave-v2/EntryPositionsManager.sol#L99

• aave-v2/EntryPositionsManager.sol#L194

• aave-v2/MorphoGovernance.sol#L444

• aave-v2/MorphoGovernance.sol#L482

Description:

Shadowing state or global variables could lead to potential bugs if the developer does not treat them carefully. To
avoid any possible problem, every local variable should avoid shadowing a state or global variable name.

Recommendation:

Rename the local scope variable with a name different compared to the storage variable to avoid shadowing.

Morpho:

Spearbit:

23

https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/aave-v2/Morpho.sol#L148-L172
https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/aave-v2/Morpho.sol#L17-L26
https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/aave-v2/MorphoGovernance.sol
https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/aave-v2/MatchingEngine.sol#L314-L321
https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/aave-v2/MatchingEngine.sol#L340-L351
https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/aave-v2/InterestRatesManager.sol#L61
https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/aave-v2/EntryPositionsManager.sol#L99
https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/aave-v2/EntryPositionsManager.sol#L194
https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/aave-v2/MorphoGovernance.sol#L444
https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/aave-v2/MorphoGovernance.sol#L482

5.5.18 Governance setter functions do not check current state before updates

Severity: Informational

Context: aave-v2/MorphoGovernance.sol#L178-L413 compound/MorphoGovernance.sol

Description:

In MorphoGovernance.sol many of the setter functions allow the state to be changed even if it's already set to the
passed in argument. For example when calling setP2PDisabled there are no checks to see if the _poolToken is
already disabled or not allowing for unnecessary state changes.

Recommendation:

The current state should be checked on important setter functions and if the new state to change is a duplicate,
then the function should revert.

Morpho:

Spearbit:

5.5.19 Emit event for amount of dust used to cover withdrawals

Severity: Informational

Context:

aave-v2/PositionsManagerUtils.sol#L62

Description: Consider emitting an event that includes the amount of dust that was covered by the contract balance.
A couple of ways this could be used:

• Trigger an alert whenever it exceeds a certain threshold so you can inspect it, and pause if a bug is found or
a threshold is exceeded

• Use this value as part of your overall balance accounting to verify everything adds up

Recommendation: Emit an event when a withdraw is done.

Morpho:

Spearbit:

5.5.20 Break up long functions into smaller composable functions

Severity: Informational

Context: aave-v2/ExitPositionsManager.sol#L204 aave-v2/ExitPositionsManager.sol#L336 aave-
v2/ExitPositionsManager.sol#L491 aave-v2/EntryPositionsManager.sol#L90 aave-v2/EntryPositionsManager.sol#L188

Description: A few functions are 100+ lines of code which makes it more challenging to initially grasp what the
function is doing. You should consider breaking these up into smaller functions which would make it easier to grasp
the logic of the function, while also enabling you to easily unit test the smaller functions.

Recommendation: Refactor these long functions to instead be comprised of smaller functions. If all is done
correctly, the entire existing test suite should pass. Add new tests for the new functions.

Morpho:

Spearbit:

24

https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/aave-v2/MorphoGovernance.sol#L178-L413
https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/compound/MorphoGovernance.sol#L265-L379
https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/aave-v2/PositionsManagerUtils.sol#L62
https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/aave-v2/ExitPositionsManager.sol#L204
https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/aave-v2/ExitPositionsManager.sol#L336
https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/aave-v2/ExitPositionsManager.sol#L491
https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/aave-v2/ExitPositionsManager.sol#L491
https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/aave-v2/EntryPositionsManager.sol#L90
https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/aave-v2/EntryPositionsManager.sol#L188

5.5.21 Remove unused struct members

Severity: Informational

Context: aave-v2/ExitPositionsManager.sol#L140

Description: The HealthFactorVars struct contains three attributes, but only the userMarkets attribute is ever
set or used. These should be removed to increase code readability.

Recommendation: Verify the other two attributes i and numberOfMarketsCreated are not needed, and remove
them if not needed.

Morpho:

Spearbit:

5.5.22 Remove unused struct

Severity: Informational

Context: aave-v2/EntryPositionsManager.sol#L76

Description: There is an unused struct BorrowAllowedVars. This should be removed to improve code readability.

Recommendation: Verify it is not needed, and remove if not needed.

Morpho:

Spearbit:

5.5.23 No validation check on prices fetched from the oracle

Severity: Informational

Context: aave-v2/ExitPositionsManager.sol#L259-L260 aave-v2/MorphoUtils.sol#L272

Description:

Currently in the liquidateLogic function when fetching the borrowedTokenPrice and collateralPrice from the
oracle the return value is not validated. This is due to the fact that the underlying protocol does not do this check
either but the fact that the underlying protocol does not do validation should not deter Morpho from performing
validation checks on prices fetched from oracles.

Also this check is done in the Compound PositionsManager.sol here so for code consistency it should also be
done in Aave-v2.

Recommendation:

The borrowedTokenPrice and collateralPrice fetched from the oracle should be validated and revert if they are
zero.

Morpho:

Spearbit:

25

https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/aave-v2/ExitPositionsManager.sol#L140
https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/aave-v2/EntryPositionsManager.sol#L76
https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/aave-v2/ExitPositionsManager.sol#L259-L260
https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/aave-v2/MorphoUtils.sol#L272
https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/compound/PositionsManager.sol#L518

5.5.24 onBehalf argument can be set as the Morpho protocols address

Severity: Informational

Context: aave-v2/EntryPositionsManager.sol#L93 compound/PositionsManager.sol#L236

Description:

When calling the supplyLogic function currently the _onBehalf argument allows a user to supply funds on behalf
of the Morpho protocol itself. While this does not seem exploitable, it can still be a cause for user error and should
not be allowed.

Recommendation:

The supplyLogic function should revert if the _onBehalf argument address is the Morpho protocol itself.

Morpho:

Spearbit:

5.5.25 maxSortedUsers has no upper bounds validation and is not the same in Compound/Aave-2

Severity: Informational

Context: compound/MorphoGovernance.sol#L170 aave-v2/MorphoGovernance.sol

Description:

In MorphoGovernance.sol the maxSortedUsers function has no upper bounds limit put in place. The maxSorte-
dUsers is the number of users to sort in the data structure. Also while this function has the MaxSortedUsersCan-
notBeZero() check in aave-v2, the compound version is missing this same error check.

Recommendation:

Consider setting an upper bounds limit on the maxSortedUsers number so as not run into gas issues when sorting
user data in the data structure. Also the MaxSortedUsersCannotBeZero() check should be added in the compound
version of this function as well for code consistency.

Morpho:

Spearbit:

5.5.26 Consider adding the compound revert error code inside Morpho custom error to better track the
revert reason

Severity: Informational

Context:

• MorphoGovernance.sol#L443

• PositionsManager.sol#L927

• PositionsManager.sol#L937

• PositionsManager.sol#L945

• PositionsManager.sol#L970

Description:

Compound is usually (if not in extreme cases) not reverting the transaction but returning an error code (code !==
0) when something wrong has happened.

Morpho is correctly reverting with a custom error when this happens, but is not reporting which was the error code
returned by compound. By tracking, as an event parameter, this code, Morpho could better monitoring when and
why interaction with compound are failing.

Recommendation:

26

https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/aave-v2/EntryPositionsManager.sol#L93
https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/compound/PositionsManager.sol#L236
https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/compound/MorphoGovernance.sol#L170
https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/aave-v2/MorphoGovernance.sol#L179
https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/compound/MorphoGovernance.sol#L443
https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/compound/PositionsManager.sol#L927
https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/compound/PositionsManager.sol#L937
https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/compound/PositionsManager.sol#L945
https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/compound/PositionsManager.sol#L970

Consider adding the compound returned error to Morpho's custom error.

Morpho:

Spearbit:

5.5.27 liquidationThreshold variable name can be misleading

Severity: Informational

Context: aave-v2/ExitPositionsManager.sol#L678

Description: The liquidationThreshold name in Aave is a percentage. The values.liquidationThreshold
variable used in Morpho's _getUserHealthFactor is in "value units" like debt:

values.liquidationThreshold = assetCollateralValue.percentMul(assetData.liquidationThreshold);.

Recommendation: Consider renaming the variable to avoid confusion. For example, liquidationThreshold-
Value.

Morpho:

Spearbit:

5.5.28 Users can be liquidated on Morpho at any time when the deprecation flag is set by governance

Severity: Informational

Context: aave-v2/MorphoGovernance.sol#L395, compound/MorphoGovernance.sol#L372, aave-
v2/ExitPositionsManager.sol#L706

Description: Governance can set a deprecation flag on Compound & Aave markets and users on this market can
be liquidated by anyone even if they're sufficiently over-collateralized. Note that this deprecation flag is independent
of Compound's own deprecation flags and can be applied to any market.

Recommendation: Users should be aware of this. Clearly communicate when you deprecate a market and give
enough time for users to unwind their positions on the markets to be deprecated.

Morpho:

Spearbit:

5.5.29 Refactor _computeP2PIndexes to use InterestRateModel's functions

Severity: Informational

Context: aave-v2/InterestRatesManager.sol#L113, compound/InterestRatesManager.sol#L100,
aave-v2/InterestRatesModel.sol#L49

Description: The InterestRatesManager contracts' _computeP2PIndexes functions currently reimplement the
interest rate model from the InterestRatesModel functions.

Recommendation: Consider refactoring the InterestRatesManager._computeP2PIndexes to use Intere-
stRatesModel functions like computeGrowthFactors, computeP2PSupplyIndex, and computeP2PBorrowIndex.
This would also guarantee that the lens contracts indeed use the same model that the contract uses as they use
the mentioned InterestRatesModel functions.

Morpho:

Spearbit:

27

https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/aave-v2/ExitPositionsManager.sol#L678
https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/aave-v2/MorphoGovernance.sol#L395
https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/compound/MorphoGovernance.sol#L372
https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/aave-v2/ExitPositionsManager.sol#L706
https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/aave-v2/ExitPositionsManager.sol#L706
https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/aave-v2/InterestRatesManager.sol#L113
https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/compound/InterestRatesManager.sol#L100
https://github.com/morpho-dao/morpho-v1/blob/5f39e0d197830dbd4ede7f1657973a56f7e21232/contracts/aave-v2/libraries/InterestRatesModel.sol#L49

	About Spearbit
	Introduction
	Risk classification
	Impact
	Likelihood
	Action required for severity levels

	Executive Summary
	Findings
	High Risk
	Liquidating Morpho's Aave position leads to state desync
	Turning off an asset as collateral on Morpho-Aave still allows seizing of that collateral on Morpho and leads to liquidations

	Medium Risk
	User withdrawals can fail if Morpho position is close to liquidation
	P2P borrowers' rate can be reduced
	Setting a new rewards manager breaks claiming old rewards
	Frontrunners can exploit system by not allowing head of DLL to match in P2P
	Morpho could be instantly liquidated when increaseP2PDeltasLogic is called on a deprecated market (deprecated by compound)
	Differences between Morpho and Compound borrow validation logic
	Users can continue to borrow from a deprecated market
	ERC20 with transfer's fee are not handled by *PositionManager
	Cannot liquidate Morpho users if no liquidity on the pool
	Supplying and borrowing can recreate p2p credit lines even if p2p is disabled
	In Compound implementation, P2P indexes can be stale
	claimToTreasury(COMP) steals users' COMP rewards
	Compound liquidity computation uses outdated cached borrowIndex

	Low Risk
	HeapOrdering.getNext returns the root node for nodes not in the list
	Heap only supports balances up to type(uint96).max
	Delta leads to incorrect reward distributions
	When adding a new rewards manager, users already on the pool won't be earning rewards

	Gas Optimization
	Minor gas saving: move variable assignment after conditional check
	liquidationThreshold computation can be moved for gas efficiency
	Add max approvals to markets upon market creation

	Informational
	Differences between Morpho and Aave liquidate validation logic
	Differences between Morpho and Aave repay validation logic
	Differences between Morpho and Aave withdraw validation logic
	Differences between Morpho and Aave borrow validation logic
	Differences between Morpho and Aave supply validation logic
	Morpho should avoid creating a new market when the underlying Aave market is frozen
	Differences between Morpho and Compound liquidate validation logic
	repayLogic in Compound PositionsManagershould revert if toRepay is equal to zero
	Differences between Morpho and Compound supply validation logic
	Consider creating a documentation that covers all the Morpho own flags, lending protocol's flags and how they interact/override each other
	Missing natspec or typos in natspec
	Removed unused "named" return parameters from functions
	Consider merging the code of CompoundMath libraries and use only one
	Consider reverting the creation of a deprecated market in Compound
	Document HeapOrdering
	Consider removing the Aave-v2 reward management logic if it is not used anymore
	Avoid shadowing state variables
	Governance setter functions do not check current state before updates
	Emit event for amount of dust used to cover withdrawals
	Break up long functions into smaller composable functions
	Remove unused struct members
	Remove unused struct
	No validation check on prices fetched from the oracle
	onBehalf argument can be set as the Morpho protocols address
	maxSortedUsers has no upper bounds validation and is not the same in Compound/Aave-2
	Consider adding the compound revert error code inside Morpho custom error to better track the revert reason
	liquidationThreshold variable name can be misleading
	Users can be liquidated on Morpho at any time when the deprecation flag is set by governance
	Refactor _computeP2PIndexes to use InterestRateModel's functions

